Symposium speakers 2015: Piotr Walczak

Neuro X is the title and theme for the May 1 symposium hosted by Johns Hopkins Institute for NanoBioTechnology. The event kicks off with a continental breakfast at 8 a.m. in the Owens Auditorium, between CRB I and CRB II on the Johns Hopkins University medical campus. Talks begin at 9 a.m. Posters featuring multidisciplinary research from across many Hopkins divisions and departments will be on display from 1 p.m. to 4 p.m.

One of this year’s speakers is Piotr Walczak, MD, PhD.

Piotr Walczak, MD, PhD

Piotr Walczak, MD, PhD

Piotr Walczak is an assistant professor in the Johns Hopkins School of Medicine Russell H. Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance (MR) Imaging. He specializes in magnetic resonance research and neuroradiology with an emphasis on stem and progenitor cell transplantation. Dr. Walczak received his MD in 2002 from the Medical University of Warsaw in Poland. He then completed a research fellowship in cell-based therapy for neurodegenerative disorders at the University of South Florida. After a fellowship in cellular imaging at Johns Hopkins University School of Medicine, Dr. Walczak joined the faculty of Johns Hopkins in 2008. He is an affiliated faculty member at the Kennedy Krieger Institute’s F.M. Kirby Research Center and the Institute for Cell Engineering.

Dr. Walczak’s research focuses primarily on noninvasively monitoring the status of stem and progenitor cells transplanted into the disease-damaged central nervous system. Stem cells are labeled with MR contrast agents, such as iron oxide nanoparticles, to precisely determine the position of the cells after transplantation. By modifying the cells using bioluminescence and MR reporter genes, as well as the use of specific promoter sequences, Dr. Walczak is working to extract information about cell survival and differentiation.

Additional speakers will be profiled in the next few weeks. To register your poster and for more details visit http://inbt.jhu.edu/news/symposium/

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

Poster presenters sought for Neuro X symposium

Johns Hopkins Institute for NanoBioTechnology (INBT) hosts its ninth annual symposium on May 1, 2015 in the Owens Auditorium on the Johns Hopkins medical campus. The theme for the speakers this year is Neuro X, where X stands for medicine, nanotechnology, engineering, science and more! Posters on any multidisciplinary theme are now being accepted. You do not have to be a member of an INBT affiliated laboratory to participate. Undergraduates, graduate students and postdoctoral fellows welcome. The event is free for Johns Hopkins associated persons. There is a fee for those outside of JHU/JHMI/JHH and is listed on the registration form.

Full details on poster guidelines and current information on the symposium can be found on the Neuro X website. To submit a poster or to simply register to attend the symposium, click here.

neuro-x-ad-flatThe symposium will begin at 8 a.m. with continental breakfast. Talks will begin at 9 a.m. and continue through 12:15 p.m. Speakers include: Alfredo Quiñones-Hinojosa, MD, FAANS, Professor of Neurological Surgery and Oncology Neuroscience and Cellular and Molecular Medicine; Jordan J. Green, PhD, Associate Professor of Biomedical Engineering, Ophthalmology, Neurosurgery, and Materials Science & Engineering; Ahmet Hoke MD, PhD, FRCPC, Professor, Neurology and Neuroscience; Patricia H. Janak, Professor, Department of Psychological and Brain Sciences/Department of Neuroscience in the Krieger School of Arts and Sciences; Piotr Walczak, MD, PhD, Associate Professor, Department of Radiology and Radiological Science; and Martin G. Pomper, MD, PhD, the William R. Brody Professor of Radiology and Radiological Science. This year’s symposium chairs are INBT director Peter Searson, Reynolds Professor, Materials Science and Engineering, and Dwight Bergles, Professor, the Solomon H. Snyder Department of Neuroscience, Department of Otolaryngology, Head & Neck Surgery.

The poster session will begin at 1:15 p.m. and conclude at 3:30 p.m. with poster prize presentations. Speaker talk titles, poster prizes and other details will be announced in the next few weeks. Don’t miss your chance to participate in one of Johns Hopkins largest, most popular and most well attended symposiums. Plan now to attend and present.

For all press inquiries regarding INBT, its faculty and programs, contact INBT’s science writer Mary Spiro, mspiro@jhu.edu or 410-516-4802.

 

 

 

Unlocking the mysteries of the blood-brain barrier

It might astonish you to know that, although we use our brains all the time, science knows very little about how they actually work. That is why recently, President Barack Obama announced a $100 million initiative to map the human brain.

“We can identify galaxies light-years away; we can study particles smaller than an atom; but we still haven’t unlocked the mysteries of the three pounds of matter that sits between our ears,” Obama said in a press conference on the announcement April 2.

The blood-brain barrier involves functional interactions between endothelial cells that form brain capillaries, astrocytes, and pericytes in a complex microenvironment. (Illustration by Martin Rietveld)

The blood-brain barrier involves functional interactions between endothelial cells
that form brain capillaries, astrocytes, and pericytes in a complex microenvironment. (Illustration by Martin Rietveld)

Obama’s Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) project will seek to discover what occurs between the 100 billion cells firing inside the brain with the goalof helping to prevent and even cure neurological diseases, such as Alzheimer’s or Parkinson’s, that affect as many as 100 million Americans.

Johns Hopkins University is at the forefront of brain science research. The Brain Science Institute (BSi) at the Johns Hopkins School of Medicine was launched to develop new multidisciplinary research teams; create cutting edge-research cores for use by all brain researchers at Hopkins; and foster translation of discoveries to treatments of brain diseases, in part, by improving our ability to partner with industry and biotechnology.

In 2012, Peter Searson, professor of materials science and engineering and director of Johns Hopkins Institute for NanoBioTechnology (INBT), joined forces with Jeffrey Rothstein MD, PhD, director of the BSi, to create the Blood-Brain Barrier Working Group. This group brings together researchers with diverse interests and expertise to address key problems associated with drug delivery, to discover the role of the blood-brain barrier (BBB) in disease, and to elucidate the structure and function of the BBB.

“The blood-brain barrier is a dynamic interface that separates the brain from the circulatory system and protects the central nervous system from potentially harmful chemicals while, at the same time, regulating transport of essential molecules and maintaining a stable environment,” Searson said. “It is formed from highly specialized endothelial cells that line the brain capillaries, which transduce signals in two directions: from the vascular system and from the brain. The structure and function of the BBB is dependent upon the complex interplay between different cell types, specifically the endothelial cells, astrocytes and pericytes, within the extracellular matrix of the brain and with the blood flow in the capillaries.”

Although the BBB serves the important purpose of tightly regulating the environment of the brain and preventing sudden changes, which the brain cannot tolerate, Searson said, “this interface also blocks the passage of drug molecules to treat disease, neurodegenerative disorders, inflammation or stroke. Unfortunately, animal models are insufficient for use in under-standing how the human blood-brain barrier functions or responds to drugs. In addition, little is known about how disease, inflammation or stroke disrupts or damages the blood-brain barrier.”

With this in mind, the BBB working group has two primary goals, Searson explained. “Our long-term goal is to build an artificial microvessel that will be the first platform that recapitulates a brain capillary in its local microenvironment. This will enable fundamental studies as well as drug discovery and the development of methods to cross the blood-brain barrier,” Searson said.

The second goal is to understand how the blood-brain barrier can be damaged or disrupted so that strategies can be developed to repair it. Injury and disease can disrupt the normal structure and function of the blood brain barrier.

Currently the BBB Working Group has 40 researchers from disciplines as diverse as anesthesiology, materials science and engineering, pharmacology and oncology. Three postdoctoral fellows and 12 pre-doctoral students are also involved. The group meets monthly and hosts expert speakers on various topics. The working group website also lists current funding opportunities to which members can apply and conferences and workshops of interest.

Membership in the working group is open to any student, faculty member or staff at Johns Hopkins University in any discipline.

Visit the Blood-Brain Barrier Working Group website here.

This article was written by Mary Spiro and appeared in the 2013 issue of Nano-Bio Magazine.

Regenerative medicine theme of science-writer bootcamp

Screen Shot 2013-04-01 at 3.19.05 PMJohns Hopkins invites you to the fifth annual science-writer boot camp. This year’s topic will be Regenerative Medicine. Join Johns Hopkins experts in regenerative medicine to learn the latest in stem cell research, tissue regeneration and organ transplantation.

Three of the 11 presenters are affiliated faculty members of the Johns Hopkins Institute for NanoBioTechnology. This event is sponsored by the Johns Hopkins Institute for Basic Biomedical Sciences.  There is no cost but reservations are required. Working press as well as freelance writers are invited to attend.

WHAT: Body Building: Recent Advances in Regenerative Medicine

WHEN: Monday, April 29, 2011, 9 a.m. to 4 p.m. (lunch will be provided)

WHERE: Bernstein-Offit Building, room LL7, Johns Hopkins SAIS Campus, 1717 Massachusetts Ave., NW, Washington, D.C. 20036

RSVP: Vanessa McMains at vmcmain1@jhmi.edu or 410-502-9410 by April 19

Confirmed speakers:

  • Gerald Brandacher, M.D. Scientific Director, Composite Tissue Allotransplantation (Reconstructive Transplant) Program
  • Robert Brodsky, M.D. Director, Division of Hematology
  • Jeff Bulte, Ph.D. Director, Cellular Imaging Section, Institute for Cell Engineering (INBT affiliated faculty)
  • Mark Donowitz, M.D. Director, Center for Epithelial Disorders; Director, Conte GI Core Research Center
  • Gary Gerstenblith, M.D. Professor, Medicine
  • Warren Grayson, Ph.D. Assistant Professor, Biomedical Engineering (INBT affiliated faculty)
  • Jun Liu, Ph.D. Professor, Pharmacology and Molecular Sciences
  • Erika Matunis, Ph.D. Associate Professor, Cell Biology
  • Guo-li Ming, M.D., Ph.D. Professor, Neurology and member of the Institute for Cell Engineering (INBT affiliated faculty)
  • Ronald Schnaar, Ph.D. Professor, Pharmacology and Molecular Sciences; Director, Lung Inflammatory Disease Program of Excellence in Glycoscience

We look forward to seeing you on April 29!

Download the color flyer here.

 

Coated nanoparticles move easily into brain tissue

Real-time imaging of nanoparticles green) coated with polyethylene-glycol (PEG), a hydrophilic, non-toxic polymer, penetrate within normal rodent brain. Without the PEG coating, negatively charged, hydrophobic particles (red) of a similar size do not penetrate. Image by Elizabeth Nance, Kurt Sailor, Graeme Woodworth.

Johns Hopkins researchers report they are one step closer to having a drug-delivery system flexible enough to overcome some key challenges posed by brain cancer and perhaps other maladies affecting that organ. In a report published online Aug. 29 in Science Translational Medicine, the Johns Hopkins team says its bioengineers have designed nanoparticles that can safely and predictably infiltrate deep into the brain when tested in rodent and human tissue.

“We are pleased to have found a way to prevent drug-embedded particles from sticking to their surroundings so that they can spread once they are in the brain,” said Justin Hanes, Lewis J. Ort Professor of Ophthalmology and project leader in the Johns Hopkins Center of Cancer Nanotechnology Excellence.

Standard protocols following the removal of brain tumors include chemotherapy directly applied to the surgical site to kill any cancer cells left behind. This method, however, is only partially effective because it is hard to administer a dose of chemotherapy high enough to sufficiently penetrate the tissue to be effective and low enough to be safe for the patient and healthy tissue. Furthermore, previous versions of drug-loaded nanoparticles typically adhere to the surgical site and do not penetrate into the tissue.

These newly engineered nanoparticles overcome this challenge. Elizabeth Nance, a graduate student in chemical and biomolecular engineering, and Johns Hopkins neurosurgeon Graeme Woodworth, suspected that drug penetration might be improved if drug-delivery nanoparticles interacted minimally with their surroundings. Nance achieved this by coating nano-scale beads with a dense layer of PEG or poly(ethylene glycol). The team then injected the coated beads, which had been marked with a fluorescent tag,  into slices of rodent and human brain tissue. They found that a dense coating of PEG allowed larger beads to penetrate the tissue, even those beads that were nearly twice the size previously thought to be the maximum possible for penetration within the brain. They then tested these beads in live rodent brains and found the same results.

Elizabeth Nance. Photo by Ming Yang.

The results were similar when biodegradable nanoparticles carrying the chemotherapy drug paclitaxel and coated with PEG were used. “It’s really exciting that we now have particles that can carry five times more drug, release it for three times as long and penetrate farther into the brain than before,” said Nance. “The next step is to see if we can slow tumor growth or recurrence in rodents.”

Woodworth added that the team “also wants to optimize the particles and pair them with drugs to treat other brain diseases, like multiple sclerosis, stroke, traumatic brain injury, Alzheimer’s and Parkinson’s.” Another goal for the team is to be able to administer their nanoparticles intravenously, which is research they have already begun.

Additional authors on the paper include Kurt Sailor, Ting-Yu Shih, Qingguo Xu, Ganesh Swaminathan, Dennis Xiang, and Charles Eberhart, all from The Johns Hopkins University.

Story adapted from an original press release by Cathy Kolf.

 

Additional news coverage of this research can be found at the following links:

Nanotechnology/Bio & Medicine

Death and Taxes Mag

New Scientist Health

Nanotech Web

Portugese news release (in Portugese)

German Public Radio (in German)

Tackling the brain’s barrier

Watch this video now. Click the image.

Much like a sentry at a border crossing, the network of tiny blood vessels surrounding the brain only allows a few important molecules in or out. Of course, there is good reason for this. The brain controls the senses, motor skills, breathing, and heart rate, as well as being the seat of thoughts and emotional experiences. Just as our tough plated skull offers a physical armor for the brain, the blood-brain barrier shields our brain from potentially harmful substances at the molecular level.

“Despite its powerful role in controlling bodily functions, the brain is extremely sensitive to chemical changes in environment,” said Peter Searson, director of Johns Hopkins Institute for NanoBioTechnology (INBT) and lead on the Blood Brain Barrier Working Group (BBBWG). The BBBWG is a collaboration between INBT and the Brain Science Institute at the Johns Hopkins School of Medicine.

Oxygen, sugars (such as glucose), and amino acids used to build proteins can enter the brain from the bloodstream with no trouble, while waste products, such as carbon dioxide, exit the brain just as easily. But for most everything else, there’s just no getting past this specialized hurdle. In fact, the blood-brain barrier protects the brain so effectively that it also prevents helpful drugs and therapeutic agents from reaching diseased areas of the brain. And because scientists know very little about the blood-brain barrier, discovering ways to overcome the blockade has been a challenge.

“We still don’t know very much about the structure and function of the blood-brain barrier,” Searson said. “Because we don’t know how the blood-brain barrier works, it presents a critical roadblock in developing treatment for diseases of the central nervous system, including Amyotrophic Lateral Sclerosis (Lou Gehrig’s disease), Alzheimer’s, autism, brain cancer, Huntington’s disease, meningitis, Multiple Sclerosis (MS), neuro-AIDS, Parkinson’s, and stroke. Treatable brain disorders are limited to depression, schizophrenia, chronic pain, and epilepsy. If we had a better understanding of how the blood-brain barrier worked, we would be in a better position to develop treatments for many diseases of the brain,” Searson said. But he added, even with a better understanding of the blood-brain barrier, humans cannot be used to study new therapies.

One way the BBBWG plans to surmount this roadblock is by creating an artificially engineered (or simulated) blood-brain barrier. An engineered artificial blood-brain barrier would allow researchers to conduct studies that simulate trauma to or diseases of the blood-brain barrier, such as stroke, infection, or cancer.

“It would also give us insight into understanding of the role of the blood-brain barrier in aging,” said Searson. Drug discovery and the development of new therapies for central nervous system diseases would be easier with an artificial blood-brain barrier and certainly safer than animal or human testing. Such an artificial membrane could be used as a platform to screen out drugs used to treat maladies outside the brain, but which have unwanted side effects, such as drowsiness.

The creation of such a platform will require the skills of a multidisciplinary team that includes engineers, physicists, neuroscientists and clinicians working together to bring new ideas and new perspectives, Searson added, and will build on recent advances in stem cell engineering and the development of new biomaterials. Current members of the BBBWG include researchers from the departments of neuroscience, anesthesiology, psychiatry, pathology and pharmacology from the Hopkins School of Medicine and from the departments of mechanical engineering, chemical and biomolecular engineering and materials science from the Whiting School of Engineering.

One member of that multidisciplinary team is Lew Romer, MD, associate professor of Anesthesiology and Critical Care Medicine, Cell Biology, Biomedical Engineering, and Pediatrics at the Center for Cell Dynamics at the Johns Hopkins School of Medicine.

“At a cellular level, the focus here is on the adhesive interface of the neurovascular unit – the place where the microcirculation meets the complex parenchyma (or functional surface) of the brain,” Romer said. “This is a durable but delicate and highly specialized region of cell-cell interaction that is responsive to biochemical and mechanical cues.”

Romer said work on the blood-brain barrier is a “fascinating and essential frontier in cell biology and translational medicine, and one that clinicians struggle to understand and work with at the bedsides of some of our sickest and most challenging patients from the ICU’s to the Oncology clinics. Development of an in vitro blood-brain barrier model system” that could be used in molecular biology and engineering manipulations would provide investigators with a powerful window into this vital interface,” Romer added.

Visit the Blood-Brain Barrier Working Group website here.

Watch a student video about current blood-brain barrier research here.

Story by Mary Spiro first appears in the 2012 edition of Nano-Bio Magazine.

Upcoming Conferences on the Blood Brain Barrier

Upcoming Conferences:

Beating the Blood-Brain & Other Blood Barriers
Lisbon, Portugal
February 6 – 8, 2013
http://www.beatbarrier.com

Barriers of the CNS
Barcelo, Lanzarote, Spain
February 10 – February 13, 2013
http://www.zingconferences.com/index.cfm?page=conference&intConferenceID=102

The 10th international conference on Cerebral Vascular Biology – CVB 2013
Montréal, Canada
June 18 – 21, 2013
www.cvb2013.com

19th Blood-Brain Barrier Consortium Meeting
March 21-23, 2013
Skamania Lodge, Stevenson, WA
Link: http://www.ohsu.edu/xd/research/centers-institutes/neurology/blood-brain-barrier/news-and-events/meeting.cfm

 

Past Conferences:

3rd Cold Spring Harbor Conference on the Blood Brain Barrier
December 5 – 8, 2012
Cold Spring Harbor, NY
Abstract Deadline: September 21, 2012
Link: http://meetings.cshl.edu/meetings/bbb12.shtml

15th International Symposium Signal Transduction in the Blood-Brain Barriers
Potsdam-Sanssouci, near Berlin, Germany
September 13 – 16, 2012
Link: http://bbb2012.fmp-berlin.de

Gordon Research Conference
Bridging Barriers to Treat CNS Disease
June 17-22, 2012
Colby-Sawyer College,
New London, NH
Link: http://www.grc.org/programs.aspx?year=2012&program=barriercns

Dendrimer-drug therapy could help calm neuroinflammation

Chronic inflammation plays a role in neurodegenerative diseases, such as cerebral palsy. Branched, nanoscale polymer structures called dendrimers, when combined with drugs, could deliver therapies to quell inflammation, leading to functional improvements in neurodegenerative diseases. Via dendrimers, drugs could even be transported across the restrictive blood-brain barrier.

Johns Hopkins University Professor Kannan Rangaramanujan will present “Dendrimer-based nanotherapeutics for the treatment of neuroinflammation” on Monday, January 30 at 1:30 p.m. in the Talbot Library (Traylor 709) at the Johns Hopkins University medical campus. His presentation will be broadcast simultaneously to the Homewood campus in the Rome Room (Clark 110), as well as live webcast.

Read an abstract of Rangarmanujan’s talk.

Professor Rangaramanujan is a faculty member in the Center for Nanomedicine in the Department of Ophthalmology/Wilmer Eye Institute at the Johns Hopkins School of Medicine. He comes to Hopkins from Wayne State University in Detroit, where he was in the Department of Chemical Engineering and Materials Science.

This talk is part of the Biomedical Engineering Seminar Series. Future seminar topics may be found on the BME seminar calendar.